
Olivia Criscione

import sys
!{sys.executable} -m pip install pandas
!{sys.executable} -m pip install numpy
!{sys.executable} -m pip install matplotlib
!{sys.executable} -m pip freeze > requirements.txt

Requirement already satisfied: pandas in c:\users\olivi\downloads\cinf308fp\.venv\li
b\site-packages (2.2.2)
Requirement already satisfied: numpy>=1.23.2 in c:\users\olivi\downloads\cinf308fp\.
venv\lib\site-packages (from pandas) (2.0.1)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\olivi\downloads\ci
nf308fp\.venv\lib\site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\users\olivi\downloads\cinf308fp\.v
env\lib\site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in c:\users\olivi\downloads\cinf308fp
\.venv\lib\site-packages (from pandas) (2024.1)
Requirement already satisfied: six>=1.5 in c:\users\olivi\downloads\cinf308fp\.venv
\lib\site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Requirement already satisfied: numpy in c:\users\olivi\downloads\cinf308fp\.venv\lib
\site-packages (2.0.1)
Requirement already satisfied: matplotlib in c:\users\olivi\downloads\cinf308fp\.ven
v\lib\site-packages (3.9.1.post1)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\olivi\downloads\cinf308f
p\.venv\lib\site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in c:\users\olivi\downloads\cinf308fp\.v
env\lib\site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\olivi\downloads\cinf308
fp\.venv\lib\site-packages (from matplotlib) (4.53.1)
Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\olivi\downloads\cinf308
fp\.venv\lib\site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: numpy>=1.23 in c:\users\olivi\downloads\cinf308fp\.ve
nv\lib\site-packages (from matplotlib) (2.0.1)
Requirement already satisfied: packaging>=20.0 in c:\users\olivi\downloads\cinf308fp
\.venv\lib\site-packages (from matplotlib) (24.1)
Requirement already satisfied: pillow>=8 in c:\users\olivi\downloads\cinf308fp\.venv
\lib\site-packages (from matplotlib) (10.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\olivi\downloads\cinf308f
p\.venv\lib\site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\olivi\downloads\cinf
308fp\.venv\lib\site-packages (from matplotlib) (2.9.0.post0)
Requirement already satisfied: six>=1.5 in c:\users\olivi\downloads\cinf308fp\.venv
\lib\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In this project, we are importing the following libraries: pandas for data manipulation and
analysis. matplotlib.pyplot for creating static, animated, and interactive visualizations.
seaborn for making statistical graphics based on matplotlib. 'numpy' for ...

In [1]:

In [2]:

In [3]:

df = pd.read_csv("Excelsior_Scholarship_Recipients_and_Dollars_by_College_Code_2017
df.head()

Academic
Year

Scholarship
Name

Sector
Type

TAP
Sector
Group

TAP
College

Code

Federal
School

Code

TAP College
Name

Scholarship
Headcount

Sch

0 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1409 7273
CUNY

BARUCH
COLLEGE

1004 23

1 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1410 2687
CUNY

BROOKLYN
COLLEGE

592 28

2 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1411 2688 CUNY CITY
COLLEGE 637 25

3 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1417 2698
CUNY COL

STATEN
ISLAND

375 11

4 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1420 4765

CUNY GRAD
SCH

UNDERGRAD
PROG

5

The dataset "Excelsior_Scholarship_Recipients_and_Dollars_by_College_Code_2017_2021.csv"
has been imported using pandas' read_csv function.

Example data cleaning
df_cleaned = df.dropna() # Removing any rows with missing values
df_cleaned.head()

In [4]:

Out[4]:

In [5]:

Academic
Year

Scholarship
Name

Sector
Type

TAP
Sector
Group

TAP
College

Code

Federal
School

Code

TAP College
Name

Scholarship
Headcount

Sch

0 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1409 7273
CUNY

BARUCH
COLLEGE

1004 23

1 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1410 2687
CUNY

BROOKLYN
COLLEGE

592 28

2 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1411 2688 CUNY CITY
COLLEGE 637 25

3 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1417 2698
CUNY COL

STATEN
ISLAND

375 11

4 2021
Excelsior

Scholarship
Program

PUBLIC
1-

CUNY
SR

1420 4765

CUNY GRAD
SCH

UNDERGRAD
PROG

5

In the above cell I cleaned the data

Groups by 'Academic Year' and sum 'Scholarship Headcount'
pie_data = df_cleaned.groupby('Academic Year')['Scholarship Headcount'].sum()

Checks the prepared data
plt.pie(pie_data, labels=pie_data.index, autopct='%1.1f%%', startangle=140, colors=
plt.title('Distribution of Scholarship Headcount by Academic Year')
plt.axis('equal') # ensures the pie chart is circular.
plt.show()

Out[5]:

In [6]:

This plot above shows how the number of scholarship recipients changes over different
academic years using a piechart. A piechart is ideal for showing how scholarship headcount
changes over academic years because it clearly illustrates trends and patterns over time by
providing the perentages of each year.

Group by 'Academic Year' and sum 'Scholarship Dollars'
bar_data = df_cleaned.groupby('Academic Year')['Scholarship Dollars'].sum()

Create the bar plot
plt.bar(bar_data.index, bar_data.values, color='red') # Bar plot
plt.title('Total Scholarship Dollars by Academic Year')
plt.xlabel('Academic Year')
plt.ylabel('Scholarship Dollars')
plt.xticks(rotation=45) # for better readability
plt.show()

In [7]:

This plot shows the total scholarship dollars distributed from 2017 - 2021. I decided to use a
bar plot for this graph because it best shows the relationship of scholarship dollars between
different academic years. This type of graph clearly shows the data for each year including
the fact that 2019 had the most total scholarship dollars.

Computes the average scholarship dollars by academic year
average_scholarship = df_cleaned.groupby('Academic Year')['Scholarship Dollars'].me

Creates the bar plot for the average scholarship dollars by year
plt.bar(average_scholarship.index, average_scholarship.values, color='purple')
plt.title('Average Scholarship Dollars by Academic Year')
plt.xlabel('Academic Year')
plt.ylabel('Average Scholarship Dollars')
plt.xticks(rotation=45) # for readability
plt.show()

In [8]:

This plot shows the average scholarship dollars awarded each academic year using a bar
plot. Just like the previous example, I decided to use a bar plot because it represents the
data the best. It is really easy to visually interpret the data and the fact that the 2019
academic year had the highest average scholarship dollars.

Filter for 2021 year
df_filtered = df_cleaned[df_cleaned['Academic Year'] == 2021]

Computes the total scholarship headcount by TAP Sector Group for 2021
total_headcount = df_filtered.groupby('TAP Sector Group')['Scholarship Headcount'].

Creates the bar plot
plt.bar(total_headcount.index, total_headcount.values, color='pink')
plt.title('Scholarship Headcount by TAP Sector Group (2021)')
plt.xlabel('TAP Sector Group')
plt.ylabel('Total Scholarship Headcount')
plt.xticks(rotation=45) # for better readability
plt.show()

In [9]:

This plot shows the number of scholarship recipients in each TAP Sector Group for the 2021
academic year using a bar plot. I think that the bar plot does a great job of showing the
relationship between each tap sector and the scholarship headcount for 2021. I think the
only other good plot type that could represent this data well would be a piechart.

Creating the scatter plot
plt.scatter(df_cleaned['Scholarship Headcount'], df_cleaned['Scholarship Dollars'],
plt.title('Relationship Between Scholarship Headcount and Scholarship Dollars')
plt.xlabel('Scholarship Headcount')
plt.ylabel('Scholarship Dollars')
plt.grid(True, linestyle='--', alpha=0.7) # Adds grid lines to make the graph easi
plt.show()

In [10]:

This scatter plot shows the relationship between the number of scholarship recipients and
the total scholarship dollars. I think that a scatter plot best shows this data set because it
clearly shows the outliers as well as the most common scholarship dollars. I also like how it is
clear how common the data points near the origin are because they are shown as a darker
organe since there are so many data points there.

headcount_per_year = df_cleaned.groupby('Academic Year')['Scholarship Headcount'].s

plt.plot(headcount_per_year['Academic Year'], headcount_per_year['Scholarship Headc
plt.title('Scholarship Headcount Over Academic Years')
plt.xlabel('Academic Year')
plt.ylabel('Scholarship Headcount')
plt.grid(True)
plt.xticks(rotation=45)
plt.show()

In [11]:

The line plot above shows the relationship of scholarship headcount over academic years.
The line plot is the best type of plot to use for showing this data because it show the trend
in scholarship headcount from 2017 to 2021. The relationship of this graph increases from
2017 to 2019 and then decreases from 2019 to 2021.

